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Abstract

The reliability of rocket engine systems was ana-

lyzed by using probabilistic and fuzzy logic techniques.

Fault trees were developed for Integrated Modular Engine

(IME) and Discrete engine systems, and then were used

with the two techniques to quantify reliability. The

IRRAS (Integrated Reliability and Risk Analysis System)

computer code, developed for the U.S. Nuclear Regula-

tory Commission, was used for the probabilistic analyses,
and FUZZYFTA ('Fuzzy Fault Tree Analysis), a code

developed at NASA Lewis Research Center, was used for

the fuzzy logic analyses. Although both techniques pro-
vided estimates of the reliability of the IME and Discrete

systems, probabilistic techniques emphasized uncertainty

resulting from randomness in the system whereas fuzzy

logic techniques emphasized uncertainty resulting from

vagueness in the system. Because uncertainty can have

both random and vague components, both techniques

were found to be useful tools in the analysis of rocket

engine system reliability.

Reliability is a factor critical to the lifecycle cost
of launch vehicles. Therefore, it is imperative that the reli-

ability of all subsystems, including the rocket propulsion

system, be improved if costs are to be reduced and the

U.S. launch vehicle industry is to be competitive. The

average success ratio of the current stable of United States
launch vehicles is less than 95 percent; 1 however, new

programs are calling for launch vehicle reliabilities of

99.5 percent and greater. Achieving such high vehicle reli-
abilities requires quantitative predictive tools for assessing

system risk. This is especially true for the propulsion sys-

tem, which historically has been the reliability driver in

space launch vehicles)

In the current state of the art both qualitative and

quantitative techniques are used to evaluate risk and reli-

ability. One common technique is to use a fault tree analy-

sis to perform a risk assessment of a system. A fault tree is

a graphical model of the sequences of faults and failures
that lead to an undesired event, such as the loss of a rocket

engine. A fault tree can be evaluated quantitatively to esti-
mate the reliability of a system. Such an evaluation is one

of the core techniques in the probabilistic risk assessment
of nuclear power plants. 2 Fault trees are valuable for

assessing large, complex systems because the pictorial

display provides insight into the system, and the relative

effects of contributing factors can be quantified.

To use fault tree analyses, we must have exact

values for the probability of component failure. In most

cases, however, these values are not known either because

either no failure data exists, or because the existing data

are vague or qualitative or were obtained under conditions
different from those under which the hardware is being

investigated. In the ease of chemical rocket propulsion,
little failure data exist. Probabilistic analyses are often

used to analyze uncertainty due to randomness in the sys-

tem. These techniques have been useful in assessing risk
in the chemical, nuclear, and aerospace fields. 3'4 How-

ever, probability theory requires that a single expected

value be specified, all other values being deemed less

probable. Probability theory then predicts the chances of

achieving that expected value. In other words, probability

theory requires that data have a statistical basis - a situa-

tion not often achievable in engineering analyses. There-

fore, probabilistic analyses are not effective when only

vague or qualitative data are available. Under conditions

of vagueness, it may not be possible to select a single

value that is most probable. Rather, only a range of possi-

ble values can be specified, all of which are equally likely.
Recent studies have shown that fuzzy logic can be used to

analyze many situations where the system description is

vague or qualitative. 5'6 In this study we developed a com-

puter model that uses fuzzy logic rules to perform fault

tree analyses. With this model we can calculate the reli-

ability of rocket engine systems and compare our results

to similar analyses done with conventional probabilistic

approaches.



For this study an Integrated Modular Engine sys-
tem (IME) and a Discrete engine system were evaluated

by using probabilistic and fuzzy logic techniques. These
engine systems were previously analyzed, 7 but uncer-

tainty in the component failure probabilities _ not
addressed. This report discusses probabilistic and fuzzy

logic approaches to evaluating rocket engine System rel|-

ability. Fault tree results from the probabilistic and fuzzy

logic analyses of the I/viE and Discrete engine systems

will also be provided for two different failure data bases.
One data base contained data on the number of compo-

nent failures per operating cycle and the other contained
data on the number of failures per time period. Finally,

this report discusses the differences in the results obtained

with the two techniques, and offers recommendations for
future work in this area.

Rocket Engine System Description

Two rocket engine designs were compared in

this study. One design, known as the Discrete engine sys-

tem design, has eight stand-alone engine units configured

to provide vehicle thrust. In the Discrete design, if one
component (such as a turbopump) falls, the corresponding
thrust chamber must be shut down. An alternative design

is the Integrated Modular Engine. In this design all the

turbopump assemblies and thrust chamber assemblies are
connected to common manifolds. In this system, there-

fore, a turbopump or thrust chamber could be shut down

independently should a failure occur in either component.
The ]ME design analyzed here has four turbopump

assemblies and eight thrust chamber assemblies. Both the

Discrete and the IME designs used an expander cycle

configuration. A diagram of the Discrete engine system is

shown in Fig. 1 and the IME system is shown in Fig. 2.

These designs are described in more detail in references
7-9.

Fault TreeAnalysis Techniques

A fault tree is a top-down method for quantify-

ing reliability on the basis of recognized system failures.

A major system failure is identified as the top event, and

the branches of the fault tree represent system conditions

that may lead to system failure. A system condition can

be classified either as an individual component failure or

a degraded component performance state that may, alone
or in some combination with other system conditions,

cause the undesired top event to occur. Component fail-

ures are considered in this report; degraded component

operational states are not.

The rate at which system components fail may

be statistically characterized by their observed occur-

rence. The failures observed may be categorized as

demand-based or time-based. Those failures that occur

during a system operating period (cycles, firings) are

termed demand-based, and those that occur per unit sys-

tem operating time (seconds, hours) are termed time-
based. Both demand-based and time-based data bases

were available for the analyses reported here. 7a° Because

the component failure probabilities differed greatly in
these data bases, both were used for these analyses of the

rocket engine systems. The failure probabilities that were
demand-based could be used in the fault tree analyses

without further mathematical manipulation. However, the

failure rates that were time-based were converted to fail-

ure probabilities by using the equation

P = 1 - exp(-_.0

where P is the failure probability, L is the time-based fail-
ure rate, and t is the operation time, which was assumed to

be 400 s for the analyses conducted here.

The probabilistic and fuzzy logic techniques

used in this study to analyze the fault trees for the IME

and Discrete systems are described in the following sec-
tions.

Probabilistic Technique

It is difficult to accurately quantify the failure

rate of rocket engine components because of numerous
factors. Two factors that contribute to this difficulty are

the relatively low number of observed failures and a pau-

city of historical data. To grasp the uncertainty in absolute
failure rates, we must construct probability distributions

that encompass the mean value of observed demand-
based and time-based failures.

Probability distributions describe a componenfs
failure rate in terms of the mean and the variance of

observed or estimated values. From these we can predict,

with various levels of confidence, the probability of a spe-

cific failure rate for a component. For instance, with a
normal distribution, as in Fig. 3, the probability that the

true failure rate is greater than its mean value is 0.5 (i.e.

50 percen0. Confidence intervals may be established by

bounding the distribution by lower and upper confidence

limits. For example, a 90-percent confidence interval
about the mean value in a normal distribution will have

confidence limits at the 5- and 95-percent probability lev-

els. Thus, 90-percent confidence exists that the true fail-

ure rate lies within these limits. Many forms of

probability distributions have been employed in modeling

the reliability of mechanical equipment; in this report, we
use the normal and lognormal distributions H with a 20-

percent coefficient of variation(CoY), which means that
the standard deviation is :v.20 percent of the mean.

Probabilistic estimates of Discrete and Inte-

grated Modular Engine system failure rates were obtained

by using IRRAS (Integrated Reliability and Risk Analysis

System, Version 4.0), which was developed for the U.S.

Nuclear Regulatory Commission to do probabilistic risk



assessments.12Componentfailurerate data 7A° and vari-

ability information were input separately into the soft-
ware. For the demand-based data base, the probability of

failure of a component was input directly. For the time-
based data base, the time-based failure probability equa-

tion given previously was used to calculate the probability

of component failure. Each component failure probability
was then combined with fault tree failure logic to generate
minimal cut sets.

A minimal cut set is the smallest combination of

component failures (basic events) that must occur to

cause the top event to occur. 13 Here, the top event is

defined as failure of the IME or the Discrete system to

provide the required thrust. This top event is caused by

the failure of more than one redundant component (such

as turbopumps) or a single-point failure (such as the loss

of a manifold). A highly reliable system is one that has a
minimal number of cut sets, a maximum number of com-

ponent failures within a cut set, and a minimal failure

probability of all components. Hence, the number of

branches that can initiate failure of the top event are mini-

mized and each branch is unlikely to occur. The probabil-

ity of overall system failure, or point estimate, is

subsequently determined from the individual minimal cut

set failure probabilities on the basis of the mean values of

the component failure rates, without consideration for
uncertainty. 12

The Discrete engine system had 112 components
and 3388 minimal cut sets. All of the Discrete system cut

sets were composed of two basic events. The IME system

consisted of 122 components and 2098 minimal cut sets.

Six of the IME minimal cut sets were single-point failures

(manifolds, sensors); that is, only one component failure

was required for the top event to occur. The remaining

2092 minimal cut sets were composed of 2 components.

The difference in the number of cut sets for the two sys-

tems was the result of differences in system integration.

Like the component failure probabilities, the top

event failure probability value has an associated uncer-

tainty. The magnitude of this uncertainty depends on

many factors, including the number of components, the

component failure probability distributions, and the fault
tree failure logic. Uncertainty analyses were conducted

with the IRRAS code using a Monte Carlo random sam-

piing technique. This is a technique in which the system

fault tree is repeatedly analyzed on the basis of a sam-

piing from each component failure probability distribu-
tion. The results were assumed to represent the true

failure state of the system. The IRRAS code reports the
first four central moments of system failure probability

distributions: the mean, the variance (reported as standard

deviation), the skewness (symmetry, reported as coeffi-

cient of) and the kurtosis (peakedness, reported as coeffi-

cient of). The coefficients of skewness and kurtosis equal

to 0 and 3, respectively, were representative of a normal
distribution.

Each component's relative contribution to the

overall probability of system failure was measured with a
dimensionless importance factor, called the Fussell-

Vesely (F-V) importance measure 12 within the IRRAS

software. The F-V importance measure indicates the per-

centage contributed to the overall probability of system

failure by the cut sets containing the component. Thus,

the F-V importance measure can be used to identify criti-

cal components for reliability enhancement. Obviously,
low F-V values are desirable.

Fuzzy Logic Teehnioue

The key concept in fuzzy logic is that of the
fuzzy set, developed by Lotfi Zadeh in 1965.14 Fuzzy set

theory recognizes that there are certain sets which have

imprecise boundaries. An example of such a set is the set

of tall people, where tall is a vague or fuzzy term. The

imprecision in the boundary is quantified by what is

known as a membership function. This membership func-

tion represents numerically the degree to which an ele-
ment is the member of the set. For instance, someone who

is 5 ft 6 in tall may be assigned a value of 0.5 for the

membership function of the set of tall people (this person

could be described as being somewhat tall), whereas
someone 7 ft tall would have a value of 1 for the member-

ship function (very tall). Thus the person who is 5 ft 6 in

tall is partially a member of the set of tall people, whereas

the person who is 7 ft tall is completely a member of this
set. The fuzzy, or multivalent, set has a gradual transition

between membership and nonmembership. Contrast this

with the classical set where a sharp division exists
between membership and nonmembership. If we use 6 ft

as the discriminating value, in a classical, or bivalent, set

everyone whose height is over 6 ft would be tall (mem-

bership function = 1), while everyone whose height is less
than 6 ft would not be a member of the set (membership

function = 0). Figure 4 compares the classical set and the

fuzzy set of tall people.

Because the fuzzy set allows for various grades

of membership, the concept is well-suited for use in reli-
ability analyses. In many such analyses the system reli-

ability is difficult to evaluate because the failure

probabilities of components are not known, the environ-

ment changes from one system to another, or the only data

available are either vague or qualitative. To evaluate such

situations we can use a fuzzy set defined over the failure

probability space. Often a trapezoid is employed to repre-

sent the failure probability range of a component, as
shown in Fig. 5. This figure can be interpreted as showing

a failure probability is around 0.5, but it could be as low

as 0.25 or as high as 0.75. Experts may provide such a



description when asked to evaluate the reliability of a par-

ticular component.

Once the fuzzy sets have been determined for

each component in the system, a fault tree analysis can be

performed to obtain the overall system reliability. The
FUZZYFTA (Fuzzy Logic Fault Tree Analysis) code was

developed at NASA Lewis Research Center. It uses fuzzy

logic to obtain the probability of an undesirable event.
The FUZZYFTA code user provides the fuzzy sets that

describe the component failure probabilities (basic

events). These component fuzzy sets are derived from

expert opinion or reliability data bases available to the

user. In addition, the user supplies the logical relation-

ships (AND, OR gates) between the top event and the
basic events. The output from the code is a fuzzy set for

the probability range of the top event and a point estimate
of the failure probability. In addition, the code supplies

importance factors similar to those obtained by using the
Fussell-Vesely technique for probabilistic analyses. These

importance factors indicate which components are the

major contributors to the probability of system failure;
they are calculated by setting each component's failure

probability equal to zero and then calculating the differ-

ence between the new system failure probability range

and the baseline failure probability range.

The FUZZY'FTA model uses the extension prin-

ciple to compute the probability of failure for the top
event (system) on the basis of the component failure

fuzzy sets. The extension principle is a general methodol-

ogy for extending operations in classical mathematics to

their equivalents by using fuzzy sets, as described in ref-
erences 15 and 16. The mathematical relations used in

FUZZYFTA are summarized in Table 1. The relations for

AND and OR gates were obtained from reference 16. And

as part of this study, we derived the fuzzy logic relation

for the N/M gate ('N events out of a total of M inputs must

occur for the gate event to occur) from approximations in
the literature. 12'16 Unlike the probabilistic analysis, the

FUZZYFTA code does not use Monte Carlo sampling to

obtain the fuzzy set for the top event. Rather, the code

obtains the range of possible failure rates for the top event

by using the relations in Table 1 to directly manipulate the

four corner points of the trapezoidal fuzzy sets.

For the demand-based fuzzy fault tree analyses

in this study, the fuzzy sets representing the component

failure probabilities were obtained by assuming that the
extreme values of the trapezoidal fuzzy set were ± 20 per-

cent of the mean values used in the probabilistic analysis

previously described. The interior values of the fuzzy set
were assumed to be halfway between the mean and the

extreme values. For example, if the mean value of a valve

failure probability was 0.0002, then the fuzzy set for a

range of ± 20 percent could be described by a trapezoid

over the probability range (ql =0.00016, Pi =0.00018,

Pr =0.00022, and qr --0.00024) with corresponding mem-
bership function values of (0,1,1, and 0). For this case,

then, the probability of failure for the valve is most likely
between 0.00018 and 0.00022, but could be as high as

0.00024 or as low as 0.00016.

Results

We used both probabilistic and fuzzy logic tech-

niques to analyze the IME and Discrete engine systems.
Uncertainty analyses are stressed in this report because

we recognize that the component failure probabilities

used are uncertain and vague. The results of the demand-

based failure and the time-based failure data base are pre-

sented in the following sections. All other demand-based
and time-based failure data were obtained from references

7 and 10, except the data for the controllers, the injector

housing, and the actuator source (which were assumed to

be 100-percent reliable) and for the sensors (which were
assigned a failure probability of 1.0xl0-6). Neither the

flow lines, with the exception of manifolds, nor the IME

turbine bypass valves discussed in reference 7 are consid-
ered in this report. All component failures in both the

demand-based and time-based analyses were treated as

uncorrelated events; that is, each component failed inde-

pendent of all other components and their operational
condition.

Demand-Based Failure Data Base

The results from the Monte Carlo sampling tech-

nique used in the demand-based probabilistic analyses of

the Discrete and IME systems are summarized in Table 2.
Two values for the manifold failure probability, lxl0 5

and lxl0 6, were used to investigate the effects of mani-

fold failure probability on system reliability.

From the table we can see that there were only

small differences (less than 1 percent) between the mini-

real cut set (the point estimates based on the mean failure

rate of each component) and the mean value from the
Monte Carlo simulations. In addition, the selection of the

component distribution (normal or lognormal) did not

appear to affect the mean values. Also, system coeffi-
cients of variation were less than 5 percent of the mean,

compared to 20 percent of the mean for the component

CoV's. Finally, for most cases the coefficient of skewness

is approximately 0 and the kurtosis is approximately 3.
These values indicate that the system failure rate distribu-

tion is nearly a normal distribution.

For reliability analyses of systems with high

degrees of uncertainty, it is important to stress relative
comparisons between systems rather than the absolute
values of the reliability estimates. Such comparisons for

the Discrete and IME systems are made in Fig. 6, which

shows the results of using IME manifold failure probabil-
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ities(P,man)of 1.0xl0"5and1.0xl0 "6, with a 20-percent

component CoV. From this figure it is clear that the Dis-

crete system is more reliable than the IME if we assume a
manifold failure probability of 1.0xl0 5. From a calcula-

tion using the mean and standard deviation of the two dis-
tributions, t6 the IME had only a 0.0003 probability of

being more reliable than the Discrete engine system.

Although the IME has fewer components (and fewer min-
imal cut sets) than the Discrete system, the reliance on

those few components is high. This is especially true of

the manifolds which represent single point failures. The

F-V importance factors provided by the IRRAS code also

indicated that for these failure probabilities the manifolds

were the most significant contributors to failure in the

ME, followed by the valves.

When a lower value is chosen for the manifold

failure rate (1.0x106), as shown in Fig. 6, the IME

becomes more reliable than the Discrete system. The data
in Table 2 indicate that the IME had a 0.998 probability of

being more reliable than the Discrete engine system with

a reduced manifold failure probability. Under these condi-
tions the manifolds were no longer the most significant

contributor to failure. The F-V importance factors showed

that the valves were the most likely cause of IME system

failure. These results confirm those obtained in reference

7, which state that the IM can be made to be more reli-

able than the Discrete system if the manifold reliability is

high. In addition, the results indicate that although much

effort should be spent on making the manifolds more reli-

able in the IME, significant consideration should be

placed on improving valve reliability as well.

The results for the demand-based fuzzy logic

fault tree analysis using FUZZYFTA are shown in Fig. 7.
For the case where the IME manifold failure probability

was 1.0xl0 "5, the IME clearly had a higher failure proba-

bility than the Discrete system. However, in contrast to
the probabilisdc results shown in Fig. 6, there was signifi-

cant overlap in the fuzzy sets. Because of the overlap of

the fuzzy sets, a calculation based on correlations in refer-
ence 17 was performed to determine the probability that
the IME was more reliable than the Discrete engine. The

probability was determined by dividing the overlap area

by the total area of the two fuzzy sets. The calculation
showed that the IME had a 0.139 probability of being

more reliable than the Discrete engine2 This value is con-

siderably higher than the value obtained by using the

probabilistic analysis, thereby reflecting the overlap of

the fuzzy sets. Figure 7 also shows similar results for the
case in which the IME manifold reliability was assumed

to be lxl0 "6. As in the probabilistic analyses, the ]ME

was more reliable than the Discrete system when the

lower manifold failure probability was used; it had a

0.676 probability of being more reliable than the Discrete

engine system for this manifold failure probability. The

fuzzy sets again showed significant overlap, however. The

importance factors calculated by FUZZYFTA were also

similar to those calculated by IRRAS, with the valves

being the most significant conlributor to the system risk in

the IME when the manifold failure probability was

reduced.

"Nme-Based Failure Data Base

The time-based analyses of the Discrete and

IME systems were conducted with a baseline system

operation time of 400 s. This operation time was selected

as typical of a single engine firing, which agrees with the
manner in which the failure rate values were established

in reference 10. Although a single mission time was

selected, previous Markov analyses have demonstrated

that the probability of system failure nonlinearly increases
with increasing duration of system operation. 7 This obser-

vation has been conf'trmed with the present fault tree anal-

yses.

The results of the time-based probabilistic sys-

tem analyses are shown in Table 3. Some general conclu-
sions can be drawn from an overview of the first four

system failure probability distribution moments generated
from the Monte Carlo simulations. The means and medi-

ans were approximately equal to the calculated point esti-

mates (rain. cut upper bound); the greatest difference was

1.55 percent. System CoV's were much smaller than the

assumed component CoV's. The component distribution

type (normal or lognormal) had little effect on the system

CoV's, but clearly played a role in skewness. The system
distributions exhibited normal distribution characteristics:

coefficients of skewness near 0 and coefficients of kurto-

sis approximately 3. Prior to the analyses we did not know
that the system distributions would be nearly normal. This

result could, however, be affected by differences in sys-

tem configuration in future designs.

The Discrete system exhibited a point estimate

failure probability of 0.2126, and the IME system demon-

strated a 0.2584 point estimate failure probability based
on reference 7 manifold failure rates, which are the base-

line values shown in Table 3. Figure 8 graphically com-

pares the uncertainty results of these two rocket engine

systems with different manifold reliabilities. With 20-per-

cent component CoV, the ]ME system has a 0.007 proba-
bility of being more reliable than the Discrete system. The

conclusion that the IME system is, in general, less reliable

than the Discrete system becomes clearer when the mini-

real cut sets from the IME fault tree are studied. Although

the IME system has 1290 fewer cut sets than the Discrete

system, the IME systemis vulnerable to those cut sets

composed of 1 basic event (single point failures), particu-

larly the manifolds. This conclusion was further sup-

ported by the F-V importance measure, which was largest
for these manifolds.



Byreducingthefailureprobability of all IME

system manifolds to 0.0001, the findings detailed in the

previous paragraph were reversed. Figure 8 compares the

two rocket engine systems under the revised manifold
failure rate condition of lxl0 -4. Now, with a 20-percent

component CoV, the IME system has a 0.995 probability
of being more reliable than the Discrete system. With the
reduced rate for manifold failure, the thrust chambers

become the most critical components contributing to the

unreliability of both the Discrete and I/vIE systems, as

indicated by the F-V importance measure. This happens
because the combustion chambers have the highest com-

ponent failure rate, and the relative importance of the sin-

gle point manifold failures has diminished. These results

differ significantly from those obtained with the demand-
based failure data base, which showed that the valves

were the biggest contributor to failure with a reduced

manifold failure probability.

The results from the time-based fuzzy logic sys-

tem analysis with the FUZZYP-"TA code are graphically

presented in Fig. 9. The results of the time-based analysis
showed that the IME had a 0.251 probability of being

more reliable than the Discrete system. By reducing all

manifold failure rates to 0.0001, the IME system fuzzy

failure probability was reduced, thus making the IME sys-

tem more reliable than the Discrete system. On the basis

of the lower manifold failure probability the IME had a

0.715 probability of being more reliable than the Discrete

system. These results are similar to the probabilistic anal-

yses conducted with the IRRAS code. It is interesting to
note, however, that the importance factors 15calculated for

all fuzzy fault tree analyses ranked the combustion cham-
bers as the most critical component in improving system

reliability even when high manifold failure rates were
used. This is in contrast to the F-V importance measure in

the probabilistic analysis which ranked the manifolds as

the major contributors to the minimal cut upper bound for

the IME high manifold failure rate case. These results
seem to indicate that refinements must be made in the

importance calculations for fuzzy fault tree analyses.

Examination of the demand-based and time-

based data showed that system uncertainty was actually

larger than component uncertainty in the fuzzy fault tree

approach. For instance, when the most likely probability

of component failure was ±10 percent, in the Discrete

system the most likely probability of system failure was

approximately ±20 percent of the point estimate. In con-

trast, when a component standard deviation of 20 percent

was used for the probabilistic analysis, the Discrete sys-

tem failure probability had a standard deviation of

approximately 5 percent. Therefore, System uncertainty

was less than component uncertainty in the probabiUstic

approach. In addition, the fuzzy logic fault tree results
have demonstrated extreme values which were larger than

the minimum/maximum values calculated in the probabi-

listic analyses. On the basis of these results, the fuzzy

logic technique is apparently more conservative than the

probabilistic approach.

When we examine both the demand-based and

time-based results, it is important to note the differences

between the probabilistic distributions and fuzzy sets. In

the probabilistic distribution, only 68 percent of the nor-
real distribution is bounded by ±1 standard deviation,

whereas in the fuzzy logic example the entire possibility

of failure is bounded within the description of the fuzzy
set. In addition, as noted in reference i6, the fuzzy logic

approximations used to calculate the failure probability

will provide a conservative result. Because of these fac-

tors, the fuzzy sets show significant overlap in contrast to

the probabilistic comparison.

The time-based probabilistic system analysis
results shown in Table 3 are four to five orders of magni-

tude larger than the demand-based analysis results
reported in Table 2. This was also true for the fuzzy logic

results in Figs. 7 and 9. This difference is a direct result of

using different failure rates and different calculation pro-
cedures. However, the importance of the analysis lies in

the relative comparison of the systems, rather than the

absolute magnitude of the failure probabilities. General

trends that are observed in one analysis approach, whether

it be based on demand or time, can be compared to the

trends observed in another analysis approach if relative

differences are considered.

Fuzzy Logic and Probability.

In the analyses described in this report, probabi-

listic and fuzzy logic techniques were used. These are

techniques that are used to try to estimate uncertainty in a

system. But all uncertainty is not the same. Random

uncertainty describes the chances that a single value

might be achieved, whereas vagueness describes a range

of possible values. Probabilistic analyses describe random

uncertainty whereas fuzzy logic analyses deal with vague-

ness in the system. To fully understand a system, it is nee-

essary to acknowledge and determine both types of

uncertainty. This is especially true for descriptions of
hardware failures. Some components fail completely,

whereas others fall partially. Or the component has more

than one failure rate because the system is not operated

the same way each time it is turned on. In addition, human
interactions with hardware consist of both random and

vague actions, which also affect the failure rates of sys-

tems.

With probabilistic approaches to fault tree analy-

ses, we can determine the system failure probability and

uncertainty on the basis of defined fault tree logic and

component failure probability distributions. Uncertainty
in the failure rate is quantified through the distribution

type and the distribution moments (mean, variance, etc.).

6



Withthefuzzylogicfaulttreeapproach,wecandeter-
minesystemfailureprobabilityonthebasisofdefined
faulttreelogicandvaguenessincomponentfailurerates.
Fuzzysetsareusedinsteadofdistributionstodescribe
componentfailurerateuncertainty,andthosefuzzysets
aremanipulatedonthebasisoffaulttreelogictoobtain
anestimateofthesystemfailureprobabilityanduncer-
tainty.Theanalyseshereshowedthatthesystemuncer-
taintycalculatedbyusingtheprobabilisticapproachwas
lessthantheassumedcomponentuncertainty.Incontrast,
thefuzzylogicapproachcalculatedsystemvagueness,
whichwaslargerthantheassumedcomponentvagueness.
Inaddition,themost likely system failure probability

regions calculated from the fuzzy fault tree analyses are

broader than the 90-percent confidence intervals deter-

mined from the probabilistic fault tree analyses. This

result reinforces the belief that the probabilistic approach

is merely a subset of the fuzzy logic technique.

Currently, fuzzy logic techniques are not as

sophisticated as probabilistic techniques in analyzing sys-

tem reliability. For instance, it is clear from this analysis

that the importance factors in the fuzzy fault tree
approach need to be refined. Fuzzy logic techniques hold

promise, however, in treating vagueness in system reli-

ability analyses. As shown here, the technique is intuitive

to an engineer's understanding of uncertainty and repre-

sents a valid approach for treating situations lacking in

comprehensive data. Further development of fuzzy logic

techniques could add another tool for analyzing the

uncertainty of engineering systems.

Concluding Remarks

Probabilistic and fuzzy logic techniques were

used in a study to evaluate the reliability of rocket engine

systems. Fault trees were developed for the Integrated

Modular Engine (IME) and the Discrete engine systems.

These fault trees were quantified probabilistically by

using the IRRAS computer code, developed for the U.S.

Nuclear Regulatory Commission. Fuzzy logic analyses

were performed using FUZZYFTA, a model developed at
NASA Lewis Research Center for the quantification of

fuzzy fault trees.

On the basis of assumptions used in this study,

the Discrete system was found to be more reliable than
the IME for the baseline cases studied. The IME was

found to be more reliable than the Discrete engine only

under conditions of significantly improved manifold reli-

ability. These results were the same for both the probabi-

listic and the fuzzy logic approaches. However, the fuzzy

logic technique showed a larger range of uncertainty in

the results than did the probabilistic technique. Also, the

results of the analyses indicated that in addition to mani-

folds, valves and combustion chambers were key reliabil-

ity drivers.

For many systems, component reliability data
are uncertain, which increases the difficulty in determin-

ing system risk. Therefore, analyses are required to ensure

that uncertainty is neither misunderstood nor ignored.

This becomes especially important during the initial

design phase of a project, when modifications can be

made prior to hardware construction. Because uncertainty

includes both random and vague components, multiple

techniques are necessary for determining system reliabil-

ity. The analyses presented here show that both probabi-
listic and fuzzy logic techniques are extremely useful

tools in determining and managing uncertainty in rocket

engine systems.

The authors wish to acknowledge Peter Rutledge

and Benjamin Buchbinder of NASA Headquarters for

their support of this research.
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TABLE 1. - MATHEMATICAL RELATIONS FOR PROBABILISTIC AND FUZZY FAULT TREE ANALYSES

(From references 12 and 16)

Gate type Probabilistic relation Fuzzy logic relation

AND P = P1P2 P=PIG P2

(2 inputs) P = (ql,lql.2, PlAPl,2, PrAPr,2, qr.lqr,2)

P = 1 - (I-PI)(1-P 2)OR

(2 inputs)

N/M PI = P2 = P3 ='--

c = M_/ft,I!fM-N) !)

P = 1 ; (1-P12) C

Pt,l = 1 - PI

Pt, l = (1-qr, l, l"Pr, l, I'pI,I' l'ql, l)

Pt,2 = 1 - P2

Pt,2 = (1-qr,2, 1-pr,2, 1-Pi,2, 1-ql,2)

P = 1 - Pt2G Pt,2

P1 = P2= P3 =...

c --M_/(N!(M-N) 0

p12 = (qi,l 2, PI,12, Pr, l2, qr,12)

1 - PI 2 = (l-qr,12, 1-pr, l2, l-lh,12, 1-qu 2)

P = 1 - (1-p12) c

Where

P

P1,P2,P3

ql =

Pl =

Pr =

qr =

N =

M ,__

Gate probability;

Bottom event (input) probability;

Left extreme value of trapezoidal fuzzy set;

Left interior value of trapezoidal fuzzy set;

Right interior value of trapezoidal fuzzy set;

Right extreme value of trapezoidal fuzzy set;

Number of input events (out of M) which must

occur for the N/M gate failure to occur;

Total number of input events in an N/M gate;



TABLE 2. - DEMAND-BASED PROBABILISTIC SYSTEM ANALYSES (IRRAS),

MONTE CARLO SAMPLING, 2000 SAMPLES

a) Discrete Engine System (point estimate = 7.018x10 5)

Component Distribution

Component CoV

Mean(xlO-b

Median (xl0 "5)

5th Percentile (xl0 "5)

95th Percentile (x 10"5)

Mieimum (xl0 "s)

Maximum (xl0 "5)

Normal

2O%

7.004

6.998

6.455

7.568

5.847

8.098

Standard Deviation (xl0 "6) 3.396

Coefficient of Variation 4.8%

Coefficient of Skewness .0143

Coefficient of Kurmsis 3.083

b) Integrated Modular Engine system (point estimate = 1.027x10-4), manifold

Component Distribution Normal

Component CoV 20%

Mean (xl0 "4) 1.027

Median (xl0 "4) 1.026

5th Percentile (xl0 "4) 0.946

95th Percentile (xl0 "4) 1.109

Minimum (xl0 "4) 0.853

Maximum (x 10"4) 1.172

Standard Deviation (x 10 "6) 4.945

Coefficient of Variation 4.8%

Coefficient of Skewness -.0025

Coefficient of Kurtosis 2.967

c) Integrated Modular Engine system (point estimate = 5.778x105), manifold

Component Distribution

Component CoV

Mean (xl0 "5)

Median (xlO "s)

5thPercentile(xl0"s)

95th Percentile (xl0 "5)

Minimum (xl0 "5)

Maximum (xl0"5)

StandardDeviation(xl0"6)

Normal

2O%

5.781

5.781

5.400

6.167

5.093

6.6O2

2.358

4.1%Coefficient of Variation

Coefficient of Skewness .0840

Coefficient of Kurtosls 2,977

Lognormal

20%

7.025

7.019

6.477

7.596

5.828

8.490

3.439

4.9%

.1383

3.111

failure probability = 1.OxlO5

I..ognormal

20%

1.027

1.025

0.947

1.118

0.875

1.238

5.173

5.0%

.2756

3.100

failure probability = 1.OxlO-6

I._sa_mal

20%

5.777

5.773

5.403

6.181

5.045

6.833

2.345

4.1%

.1294

3.285



TABLE 3. - TIME-BASED PROBABILISTIC SYSTEM ANALYSES (IRRAS),

MONTE CARLO SAMPLING, 2000 SAMPLES

a) Discrete Engine System (point estimate = 0.2126)

Component Distrilyation

Component CoV

M_, (,ao"'i

Median (xl0 "l)

5th Percentile (xl0 "l)

95th Percentile (x 10 "l)

Minimum (xl0 "l)

Maximum (xl0 "l)

Standard Deviation (xl0 "2)

Normal Lognormal

20% 20%

2.123 2.125

2.123

1.910

2.121

1.915

2.350 2.360

1.664 1.737

2.632 2.702

1.318 1.341

Coefficient of Variation 6.2% 6.3%

Coefficient of Skewness .06747 .2313

Coefficient of Kurtosis 3.085 3.145

b) Integrated Modular Engine system (point estimate = 0.2584), manifold #1 failure rate = 0.026411000 s

(failure probability =.0105), manifolds #2-5 failure rate = 0.066/1000 s (failure probability =.0261)

(baseline)

Component Distribution
T,

Component CoV

Mean (xl0 "t)

Median (xlO "1)

5th Percentile (xl0 "1)

Normal

20%

2.581

9.580

2.369

95th Percentile (xl0 "l) 2-803 2.817

Minimum (x 10 "1) 2.155 2.195

Maximum (xl0 "1) 3.050 3.091

Standard Deviation (x 10 "2) 1.310

Coefficient of Variation 5.1%

Coefficient of Skewness

Coefficient of Kurtosis

.08594

3.131

Lognormal

20%

2.585

2.578

2.371

1.342

5.2%

.1302

2.829

c) Integrated Modular Engine system (point estimate = 0.1675), manifold failure rate =.0002511000 s

(manifold failure probability = 0.0001)

Component Distribution Normal Lognormal

Component CoV 20% 20%

Mean (xl0"l) 1.676 1.672

Median (xI0"i) 1.676 1.668

5th Percentile (xl0 "l) 1.491

95th Percentile (xl0 "1) 1.869

Minimum (xl0 "1) 1.330

Maximum (xl0 "l) 2-071
T

Standard Devi ati on (x 10 "2) 1.151

Coefficient of Variation 6.9%

Coefficient of Skewness .1167

Coefficient of Kur_sis 2.907

1.488

1.875

1.314

2-181

1.178

7.0%

.3271

3.322
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Figure 1.- Discrete engine diagram, expander cycle configuration.
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Figure 2.- Integrated Modular Engine diagram, expander cycle configuration.
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Figure 5.- Trapezoidal fuzzy set.
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Figure 6.- Comparison of demand-based IME and Discrete engine system

failure probability distributions.
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Figure 7.- Comparison of demand-based IME and Discrete engine system

failure probability fuzzy sets.
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Figure 8.- Comparison of time-based IME and Discrete engine system

failure probability distributions.
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failure probability fuzzy sets.
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